Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges
نویسندگان
چکیده
منابع مشابه
Methane storage in metal-organic frameworks: current records, surprise findings, and challenges.
We have examined the methane uptake properties of six of the most promising metal organic framework (MOF) materials: PCN-14, UTSA-20, HKUST-1, Ni-MOF-74 (Ni-CPO-27), NU-111, and NU-125. We discovered that HKUST-1, a material that is commercially available in gram scale, exhibits a room-temperature volumetric methane uptake that exceeds any value reported to date. The total uptake is about 230 c...
متن کاملHigh Methane Storage Capacity in Aluminum Metal–Organic Frameworks
The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal-organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and ...
متن کاملDesign of covalent organic frameworks for methane storage.
We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH(4)) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found...
متن کاملThe current status of hydrogen storage in metal–organic frameworks†
The rapid consumption of petroleum deposits and the escalating air pollution problems caused by burning fossil fuels have driven the global research community to look for cleaner and renewable energy resources. Albeit not a primary energy source, hydrogen is an ideal energy carrier. It almost triples the gravimetric heat of combustion of gasoline (120 MJ kg 1 vs. 44.5 MJ kg ). More importantly,...
متن کاملRecent advances in carbon dioxide capture with metalorganic frameworks
Uncontrolled massive release of the primary greenhouse gas carbon dioxide (CO2) into atmosphere from anthropogenic activities poses a big threat and adversely affects our global climate and natural environment. One promising approach to mitigate CO2 emission is carbon capture and storage (CCS), in which ideal adsorbent materials with high storage capacity and excellent adsorption selectivity ov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2013
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja4045289